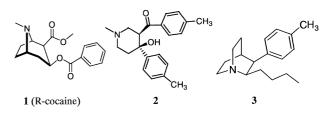


Bioorganic & Medicinal Chemistry Letters 13 (2003) 513-517

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Pharmacophore-Based Discovery of Substituted Pyridines as Novel Dopamine Transporter Inhibitors


Istvan J. Enyedy,^a Sukumar Sakamuri,^a Wahiduz A. Zaman,^b Kenneth M. Johnson^b and Shaomeng Wang^{a,*}

^aDepartments of Internal Medicine and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-0934, USA ^bDepartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA

Received 31 July 2002; accepted 6 October 2002

Abstract—Abnormal dopamine signaling in brain has been implicated in several conditions such as cocaine abuse, Parkinson's disease and depression. Potent and selective dopamine transporter inhibitors may be useful as pharmacological tools and therapeutic agents. Simple substituted pyridines were discovered as novel dopamine transporter (DAT) inhibitors through pharmacophore-based 3D-database search. The most potent compound **18** has a K_i value of 79 nM in inhibition of WIN35,248 binding to dopamine transporter and 255 nM in inhibition of dopamine reuptake, respectively, as potent as cocaine. Preliminary structure–activity relationship studies show that the geometry and the nature of the substituted pyridines described herein represent a class of novel DAT inhibitors with simple chemical structures and their discovery provides additional insights into the binding site of DAT. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Dopamine (DA) is a neurotransmitter crucial for normal brain function. The dopamine transporter (DAT) plays a critical role in terminating DA neurotransmission by taking up DA released into the synapse.^{1,2} Abnormal DA signaling in brain has been implicated in many pathological conditions such as cocaine abuse, Parkinson's disease and depression.¹⁻³ The ability of cocaine to bind to the DAT and to inhibit the reuptake of DA has been strongly implicated in the reinforcing properties of cocaine.² As such, considerable emphasis has been directed toward DAT as a molecular target for developing a pharmacotherapy for the treatment of cocaine addiction and abuse.¹⁻⁴ Novel DAT inhibitors may function as mild and long-lasting stimulants, which may be used as replacement therapy for cocaine addiction.^{2,5} These compounds can also function as cocaine antagonists or 'partial agonists' in behavioral models, and may be useful as potential therapeutic agents for the treatment of certain aspects of cocaine abuse and addiction.² DAT inhibitors with truly novel chemical scaffolds will also provide new insights into the binding site in DAT.

Our group has recently employed a pharmacophorebased 3D-database searching approach for the discovery of novel DAT inhibitors.^{4,6–9} Extensive structure-activity relationship studies on cocaine (1) and other tropane analogues showed that a tertiary amine at the 8-position, a phenyl group at the 3-position and a carbonyl group at the 2-position may be crucial for their binding to the DAT.⁴ Based upon these data we constructed the first pharmacophore model.⁴ 3D-database searching using the first pharmacophore model led to the discovery of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone (2)^{4,9} and 2-alkyl-3aryl quinuclidines¹⁰ (3) among others as novel DAT inhibitors.

Although our very first pharmacophore model was successful in identification of novel DAT inhibitors, several known potent DAT inhibitors like **4**, **5**, **6**, and $7^{11,12}$ (Fig. 1) did not have a carbonyl group as specified in the

^{*}Corresponding author. Tel.: +1-734-615-0362; fax: +1-734-647-9647; e-mail: shaomeng@umich.edu

⁰⁹⁶⁰⁻⁸⁹⁴X/03/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00943-5

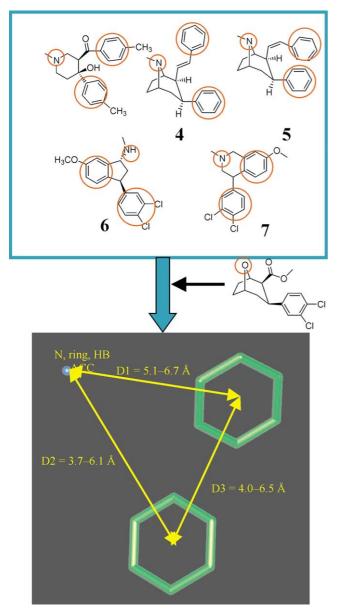
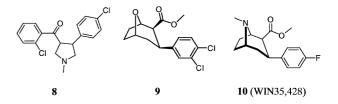



Figure 1. A new pharmacophore model derived from several known DAT inhibitors.

first pharmacophore model. Furthermore, in our design of quinuclidines as a novel class of DAT inhibitors, we also found that the carbonyl group in the original lead compound was not essential.¹³ This carbonyl group could be replaced with either an aliphatic or an aromatic hydrophobic group. Taken together, these data suggested that the carbonyl group was not absolutely required for binding to the DAT and inhibition of DA reuptake. Thus, more than one pharmacophore model can be proposed and used for the discovery of novel DAT inhibitors. Based on this idea, we proposed our second pharmacophore model that had the carbonyl group replaced with a phenyl group.⁷ 3D-database pharmacophore searching using this second pharmacophore model led to the identification of 3,4-disubstituted pyrrolidines (8) as novel DAT inhibitors.7

Our goal is to identify novel DAT inhibitors with a different binding mode from that of cocaine which would potentially function as cocaine antagonists. Recent sitedirected mutagenesis experiments showed that mutation of aspartate 79 (Asp79) to alanine residue strongly affects the binding affinity of both substrate and cocaine analogues containing an amine nitrogen.^{14,15} The sitedirected mutational experiments thus suggest a direct interaction of Asp79 with the basic amine groups of cocaine analogues. The basic amine group in cocaine analogues and DA becomes protonated (positively charged) under physiological conditions, thus having a strong interaction with the negatively charged Asp79. Thus replacing the basic amine group in cocaine analogues and DA with a functional group that cannot have a strong interaction with Asp79 may lead to DAT inhibitors with novel binding mode to DAT. A recent study has showed that 8-oxa-2-carbomethoxynorbenzotropine (9) is a potent DAT inhibitor.¹⁶ In compound 9, an oxygen atom which can function only as a hydrogen bonding acceptor replaces the basic nitrogen atom in cocaine analogues, indicating that the presence of a basic amino group is not an absolute requirement for high affinity binding to the DAT and a hydrogen bond acceptor in this position of the basic nitrogen can be equally effective for binding to the DAT and for inhibition of DA reuptake. This prompted us to propose a new pharmacophore model (Fig. 1) in which the tertiary nitrogen (sp³) atom was replaced with a hydrogen-bond acceptor N (sp²) atom in a ring system. Distance parameters between the nitrogen atom and the center of the two aromatic rings were established based upon low energy structures obtained from the conformational analysis of compounds 2, 4, 5, 6, and 7.

Using this new pharmacophore model we searched the National Cancer Institute (NCI)¹⁷ 3D-database that contained 206,876 'open' compounds accessible by the public. The program \widehat{Chem} - $X^{1\hat{8}}$ was used for identifying compounds that fit our pharmacophore query. A total of 1104 (0.5%) compounds ('hits') met the pharmacophore requirements as specified in the Figure 1. These 'hits' were only potential DAT inhibitors and they needed to be confirmed for their activity to inhibit the reuptake of DA into striatal nerve endings (synaptosomes) and to displace the binding of [³H]WIN35,428 (10) to DAT.⁴ Since the binding and uptake assays were quite time-consuming, we used filters for selecting a limited number of 'hits' for testing. The molecular weight of the selected compounds had to be below 500, the number of rotatable bonds had to be below five, the chemical matter had to be novel and attractive for chemical modifications. We selected 10 structurally diverse compounds for preliminary testing.

These 10 compounds were first screened in DA uptake assay. Since we were only interested in fairly potent compounds, we have screened them with a concentration of 1 μ M for each compound. Two compounds **17** and **18** were found to have significant inhibition of DA reuptake. The IC₅₀ value was estimated by adding the radiolabeled neurotransmitter following equilibration between the test compounds and the transporter.

Table 1. Preliminary results of selected 'hits' from pharmacophorebased virtual screening in dopamine reuptake assay

Compd	Structure	DA K_i (μ M)	
11		> 1.0	
12		> 1.0	
13	N=C	> 1.0	
14		> 1.0	
15	N ^N N N	> 1.0	
16	N N CI	> 1.0	
17		2.3	
18		0.2	
19		> 1.0	
20	N	> 1.0	

Therefore, we were able to use the Cheng-Prusoff equation for classic, competitive inhibition to calculate the K_i values from IC₅₀ values in these experiments. Their IC₅₀ values were determined using the computer program LIGAND. The K_m values used were 67 nM for [³H]DA, 53 nM for [³H]5-HT, and 54 nM for [³H]NE.¹⁹ While **17** has a K_i value of 2.3 μ M, **18** has a K_i value of 0.2 μ M, as potent as cocaine (Table 1). Interestingly, both of these compounds belong to substituted pyridines.

Compound 18 represents a novel class of DAT inhibitors with very simple chemical structure and fairly good potency. We have tested six additional new analogues to gain insights into structure-activity relationship for this class of DAT inhibitors (Table 2). Compounds 18, 21, 22, and 23 show quite potent activities in binding and uptake assays, with K_i values 0.079–0.780 µM in binding, and $0.255-1.067 \mu M$ in inhibition of DA reuptake, respectively. Compound 18 is the most potent among tested with K_i values of 79 nM in binding and of 255 nM in inhibition of DA reuptake. Despite its very simple chemical structure, 18 is as potent as cocaine in the DA uptake assay. The activities of compounds 18, 21, and 22 show that the position of the nitrogen on the pyridine ring (or the position of the diphenylmethyl substituent on the pyridine ring) affects both inhibition of DA uptake and WIN binding (Table 2). Compounds 21 and 22 with the diphenylmethyl substituent at either the meta- or the ortho-position on the pyridine ring are about 10-fold less potent in WIN binding and 4-fold less potent in inhibition of DA reuptake, respectively, when compared to 18. Compound 23, which has a benzyl group in the position of the phenyl group in 18, is only slightly less potent than 18. This suggests that a larger

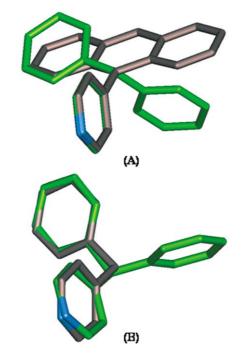


Figure 2. Superposition of the lowest energy conformations: (A) compound 11 (green) and compound 15 (grey). (B) Compound 11 (green) and compound 17 (grey).

Compd	Structure	$K_{ m i}~(\mu{ m M})$			
		[H ³]WIN binding	[H ³]DA uptake	[H ³]5-HT uptake	[H ³]NE uptake
R-cocaine (1)			0.270 ± 0.020	0.155 ± 0.001	0.108 ± 0.004
18		0.079 ± 0.004	0.255 ± 0.008	1.160±0.020	3.46 ± 0.10
21		0.780 ± 0.064	0.860 ± 0.032	12.60±2.700	7.32±0.77
22		0.742 ± 0.026	1.067 ± 0.034	35.00±7.000	5.53 ± 0.45
23		0.099 ± 0.017	0.263 ± 0.003	0.910±0.100	0.393 ± 0.008
24		> 10.00	> 10.00	> 10.00	> 10.00
25		> 10.00	>10.00	> 10.00	> 10.00
26		> 10.00	> 10.00	> 10.00	> 10.00

Table 2. Binding affinities of substituted pyridines to DAT and their update activities at the three monoamine transporters

Standard deviation was obtained with three experiments.

group can be tolerated at this site for binding to the DAT. Compound 24, whose structure may be viewed as the diphenyl rings in 18 fused into an anthracene ring, has a minimal activity at 10 µM. Likewise, compound 25, which also has an fused anthracene ring, is also inactive. Molecular modeling studies showed that the two phenyl rings in 18 have a quite different relative orientation as compared to the corresponding aromatic rings in 24 (Fig. 2A). While the two aromatic rings in 24 have to be in the same plane, the two phenyl rings in 18 cannot be in the same plane in low energy conformations because they are connected to a sp³ carbon. Compound 26, which may be viewed as one phenyl ring in 18 being replaced with H, is inactive. Molecular modeling shows that the pyridine and the phenyl rings in 26 can be superimposed on the corresponding rings in 18 (Fig. 2B), suggesting that both phenyl rings in 18 are important for binding to DAT.

To achieve a further insight into the selectivity of these compounds among the three monoamine transporters (DAT, SERT and NET), we also evaluated the activity of the seven monosubstituted pyridines in inhibition of 5-HT and NE reuptake (Table 2). Our

data showed that 22 has the highest selectivity, 35-fold, between inhibiting DA uptake versus 5-HT uptake. Compound 18 has the highest selectivity, about 14-fold, between inhibiting DA uptake versus NE uptake. Compound 23, whose structure is more flexible than 18, shows no selectivity between DAT and NET, but has the same selectivity as 18 between DAT and SERT. The difference in selectivity for monoamine transporters between 23 and 18 may also be attributed to the size difference between substituents on the pyridine ring. Compounds 24–26 show no appreciable activity for up to 10 μ M concentration. Our data suggests that the position, size and flexibility of the substituents on the pyridine ring are important for their selectivity among these three monoamine transporters for this class of compounds.

In summary, simple substituted pyridines are discovered as a novel class of DAT inhibitors through 3D database searching using a new pharmacophore model. The discovery of pyridines as fairly potent DAT inhibitors provides a validation to our proposed new pharmacophore model used in our 3Ddatabase searching and further shows that the protonated nitrogen and the ester group in cocaine are not absolutely required for binding to DAT and other monoamine transporters.

Acknowledgements

The financial support (DA R0111545 to S.W.) from the National Institute on Drug Abuse is greatly appreciated.

References and Notes

1. Chen, N.; Reith, M. E. A. Eur. J. Pharmacol. 2000, 405, 32939.

2. Carroll, F. I.; Howell, L. L.; Kuhar, M. J. J. Med. Chem. 1999, 42, 2721.

3. van Vliet, L. A.; Rodenhuis, N.; Wikström, H. J. Med. Chem. 2000, 43, 3549.

4. Wang, S.; Sakamuri, S.; Enyedy, I. J.; Kozikowski, A. P.; Deschaux, O.; Bandyopadhyay, B. C.; Tella, S. R.; Zaman,

W. A.; Johnson, K. M. J. Med. Chem. 2000, 43, 351.

5. Volkow, N. D.; Fowler, J. S.; Wang, G.-J. J. Psychopharmacol. 1999, 13, 337.

6. Sakamuri, S.; Enyedy, I. J.; Kozikowski, A. P.; Zaman, W. A.; Johnson, K. M.; Wang, S. Bioorg. Med. Chem. Lett.

2001, *11*, 495. 7. Enyedy, I. J.; Zaman, W. A.; Sakamuri, S.; Kozikowski,

A. P.; Johnson, K. M.; Wang, S. Bioorg. Med. Chem. Lett. 2001, 11, 1113.

8. Enyedy, I. J.; Wang, J.; Zaman, W. A.; Johnson, K. M.; Wang, S. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1775.

9. Wang, S.; Sakamuri, S.; Enyedy, I. J.; Kozikowski, A. P.; Zaman, W. A.; Johnson, K. M. *Bioorg. Med. Chem.* **2001**, *9*, 1753.

10. Sakamuri, S.; Enyedy, I. J.; Kozikowski, A. P.; Wang, S. *Tetrahedron Lett.* **2000**, *41*, 9949.

11. Hoffman, B. T.; Kopajtic, T.; Katz, J. L.; Newman, A. H. *J. Med. Chem.* **2000**, *43*, 4151.

12. Kozikowski, A. P.; Saiah, M. K. E.; Johnson, K. M.; Bergmann, J. S. J. Med. Chem. **1995**, *38*, 3086.

13. Sakamuri, S.; Enyedy, I. J.; Zaman, W. A.; Tella, S.

R.; Kozikowski, A. P.; Flippen-Anderson, J. L.; Farkas, T.; Johnson, K. M.; Wang, S. *Bioorg. Med. Chem.* In press.

14. Kitayama, S.; Shimada, S.; Xu, H.; Markham, L.; Donovan, D. M.; Uhl, G. R. *Proc. Natl. Acad. Sci. U.S.A.* **1992**, *89*, 7782.

15. Itokawa, M.; Lin, Z.; Cai, N.-S.; Wu, C.; Kitayama, S.; Wang, J.-B.; Uhl, G. R. *Mol. Pharmacol.* **2000**, *57*, 1093.

16. Meltzer, P. C.; Blundell, P.; Gonzalez, M. D.; Chen, Z.; George, C.; Madras, B. K. J. Med. Chem. **1997**, 40, 2661.

17. Milne, G. W. A.; Nicklaus, M. C.; Driscoll, J. S.; Wang, S.; Zaharevitz, D. W. J. Chem. Inf. Comput. Sci. 1994, 34, 1219.

18. *Chem-X* version 96; Oxford Molecular Group, Inc.: Hunt Valley, MD 21030, 2001.

19. Zhang, A.; Zhou, G.; Hoepping, A.; Mukhopadhyaya, J.; Johnson, K. M.; Zhang, M.; Kozikowski, A. P. *J. Med. Chem.* **2002**, *45*, 1930.