Equilibrium Acidities in Dimethyl Sulfoxide Solution

FREDERICK G. BORDWELL

Department of Chemistry, Northwestern University, Evanston, Illinois 60201 Received May 6, 1988 (Revised Manuscript Received August 10, 1988)

Equilibrium acidities provide a fundamental data base for assessment of the electronic and steric effects brought about by structural variations in organic molecules. The Hammett equation,¹ based on the aqueous acidities of meta- and para-substituted benzoic acids, and the Taft equation, based partially on the aqueous acidities of substituted acetic acids, GCH_2CO_2H ,² have served chemists in this regard for over 40 years. The Hammett H_0 acidity function and the like have allowed the aqueous acidity scale, which has a practical pK_a range of 0-12, to be extended downward into the negative pK_a region by about an equal amount.³ The aqueous scale has also been extended upward by about 12 p K_a units by the use of $H_$ acidity functions that employ cosolvents and strong bases.⁴ These models and functions have severe limitations, however.

The first acidity scale to be established in a pure solvent other than water was the result of the pioneering work of Conant, Wheland, and McEwen in ether or benzene.⁵ During the past 20 years an ion-pair acidity scale covering an "effective pK_a range" from about 15 to 40 has been developed in cyclohexylamine (CHA),⁶ and similar studies in other low-dielectric-constant solvents including 1,2-dimethoxyethane (DME)^{7a} and tetrahydrofuran (THF)^{7b,c} have been carried out. A more limited ion-pair acidity scale has been developed in liquid NH₃.^{7d} Also, during this period, acidity scales have been established in the polar non-hydrogenbond-donor (NHBD) solvents dimethyl sulfoxide $(Me_2SO)^8$ and N-methylpyrrolidin-2-one (NMP),⁹ which have relatively high dielectric constants. The pK_a 's measured in these solvents differ from ion-pair pK_a 's in that they are absolute, in the sense that they are based on Me₂SO and NMP as the standard states, which allows direct comparisons to be made with H₂O and gas-phase pK_a 's. A truly absolute acidity scale has been established in the gas phase, which, for the first time, provides intrinsic measures of structural effects free of solvent effects.¹⁰ Our purpose in this Account is (a) to discuss briefly acidities in various solvent media. (b) to present a table of representative equilibrium acidity constants in Me₂SO solution, and (c) to illustrate ways in which these pK_a data can be used. In an accompanying Account we compare acidities in Me₂SO solution with intrinsic gas-phase acidities and discuss some of the insights into solvation effects provided thereby.

Acidities in H_2O and Me_2SO . It is important to recognize that pK_a values are solvent dependent. The dissociation constant of an acid, formally defined by eq 1, depends on the ability of the solvent to solvate the

$$H-A \rightleftharpoons H^+ + A^- \tag{1}$$

proton, the anion, and the undissociated acid. Since solvation of the proton is constant in a given solvent and solvation of most neutral acids is small compared to that of their conjugate bases, differences in acidities brought about by structural variations or solvent changes are usually caused by changes in the energies of the anions. The large acidity increases observed in changing from Me₂SO to H₂O for oxygen acids forming oxyanions that are strongly H-bonded to water provide examples (Table I).

In Table I we see that the acidities of very strong acids such as F₃CSO₃H, HBr, HCl, and CH₃SO₃H are

(1) (a) Jaffe, H. H. Chem. Rev. 1953, 53, 191-261. (b) Exner, O. Advances in Linear Free Energy Relationships; Chapman, N. B., Shorter, J., Eds.; Plenum: New York, 1972; Chapter 2. (c) Johnson, C. D. The Hammett Equation; Cambridge University: Cambridge, England, 1973. (d) Exner, O. Correlation Analysis in Chemistry; Chapman, N. B., Shorter, J., Eds.; Plenum: New York, 1978; Chapter 10.

(2) (a) Taft, R. W. Steric Effects in Organic Chemistry; Newman, M. (2) (a) Tatt, K. W. Steric Effects in Organic Chemistry; rewinan, n., S., Ed.; Wiley: New York, 1956. (b) Shorter, J. Advances in Linear Free Energy Relationships; Chapman, N. B., Shorter, J., Eds.; Plenum: New York, 1972; Chapter 2. (c) Charton, M. J. Am. Chem. Soc. 1975, 97, 1552-1556, 3691-3693. (d) Bordwell, F. G.; Fried, H. E. Tetrahedron Lett. 1977, 1121-1124. (e) Bordwell, F. G.; Bartmess, J. E. J. Org. Chem. 1978, 43, 3101-3107. (f) Taft, R. W.; Topsom, R. D. Prog. Phys. Org. Chem. 1967, 16 (1987) Chem. 1987, 16, 1-83. (3) Cox, R. A.; Yates, K. Can. J. Chem. 1983, 61, 2225-2243 and ref-

erences cited therein

(4) (a) Bowden, K. Chem. Rev. 1966, 66, 119–131. (b) Cox, R. A.; Stewart, R. J. Am. Chem. Soc. 1976, 98, 448-498. (c) Harris, M. G.; Stewart, R. Can. J. Chem. 1977, 55, 3800-3806.

Stewart, R. Can. J. Chem. 1911, 55, Soco-3000.
(5) Conant, J. B.; Wheland, G. J. Am. Chem. Soc. 1932, 54, 1212-1221.
McEwen, W. K. J. Am. Chem. Soc. 1936, 58, 1123-1129.
(6) (a) Streitwieser, A., Jr.; Hammons, T. H.; Ciffurin, E.; Brauman, J. I.J. Am. Chem. Soc. 1967, 89, 59-67. (b) Streitwieser, A., Jr.; Juaristi, E.; Nebenzahl, L. L. In Comprehensive Carbanion Chemistry; Buncel, E., Durst, T., Eds.; Elsevier: Amsterdam, 1980.

(7) (a) During the past 12 years A. I. Shatenshtein and his co-workers have developed an acidity scale in Me₂SO and an ion-pair acidity scale in DME, using Li⁺, K⁺, and Cs⁺ counterions. (The pK_a 's measured in Me₂SO, when placed on an absolute scale, usually agree with ours to within ± 0.3 pK unit.) For recent work and leading references, see: Shatenshtein, A. I., et al. J. Org. Chem. USSR (Engl. Transl.) 1978, 14, 829-833; 1980, 16, 2089-2092; 1981, 17, 260-265; 1982, 18, 6-10; 1983, 19, 405-408. (b) Bors, D. A.; Kaufman, M. J.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1985, 107, 6975-6982. (c) Fraser, R. R.; Mansour, T. S.; Chem. Soc. 1955, 107, 6975-6962. (c) Fraser, R. R.; Mansour, T. S.;
 Savard, S. J. Org. Chem. 1985, 50, 3232-3234. (d) Lagowski, J. J. Pure Appl. Chem. 1971, 25, 429-456.
 (8) (a) Kolthoff, I. M.; Reddy, T. M. Inorg. Chem. 1962, 1, 189-194.
 (b) Steiner, E. C.; Gilbert, J. M. J. Am. Chem. Soc. 1963, 85, 3054-3055;
 Def. 97, 290, 294. (c) Etchic, C. D. U.L. Lall, D. F. L. Am. Chem. Soc.

(b) Steiner, E. C.; Gilbert, J. M. J. Am. Chem. Soc. 1963, 83, 3054-3055; 1965, 87, 382-384. (c) Ritchie, C. D.; Uschold, R. E. J. Am. Chem. Soc. 1967, 89, 1721-1725. (d) Kolthoff, I. M.; Chantooni, J. K., Jr.; Bhowmik, S. J. Am. Chem. Soc. 1968, 90, 23-28. (e) Courtot-Coupez, J.; Le Démézet, M. Bull. Soc. Chim. Fr. 1969, 1033-1040. (f) Ritchie, C. D. Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4. (g) Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. D.; Drucker, G. E.; Mar-clin 7, McCollump, B. L.; McCollum, C. L. Varino, N. B. J. Am. Chem. golin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006-7014.

(9) Bordwell, F. G.; Branca, J. C.; Hughes, D. L.; Olmstead, W. N. J.

 Org. Chem. 1980, 45, 3305-3312.
 (10) Bartmess, J. E.; McIver, R. T., Jr. Gas Phase Ion Chemistry;
 Bowers, M. T., Ed.; Academic: New York, 1979; Vol. 2, Chapter 11. An update of this acidity scale will soon be published by J. E. Bartmess in The Journal of Physical and Chemical Reference Data.

Frederick G. Bordwell is Professor Emeritus at Northwestern University. (For a biography summarizing his earlier research activities, see Acc. Chem Res. 1972, 5, 374). In the period 1970-1980 the Bordwell research group established acidity scales in Me₂SO and N-methyl-2-pyrrolidone solvents us ing a method adapted from one developed by E. C. Steiner at Dow Chemical Co. Since 1980 the research focus has shifted to the application of the data in the Me₂SO scale to problems in physical organic chemistry, the results of which are summarized in this Account.

Table I Equilibrium Acidities in Dimethyl Sulfoxide and in Water						
$pK_a(H_2O)$	$pK_a(Me_2SO)^b$	acid	pK _a (

acid	$pK_a(H_2O)$	$pK_a(Me_2SO)^b$	acid	$pK_a(H_2O)$	$pK_a(Me_2SO)^b$	
F ₃ CSO ₃ H	-14ª	0.3°	F ₃ CSO ₂ NH ₂	6.3	9.7	
HBr	-9ª	0.9°	PhSH	6.5	10.31	
HCl	-8ª	1.8°	$(CH_3CO)_2CH_2$	8.9	13.3	
$CH_{3}SO_{3}H$	-0.6ª	1.6°	HCN	9.1	12.9 ^e	
2,4,6-(NO ₂) ₃ C ₆ H ₂ OH	0	$\sim 0^d$	NH₄ ⁺	9.2	10.5 ^d	
4-Cl-2,6-(NO ₂) ₃ C ₆ H ₂ OH	3.0	3.6	CH ₃ NO ₂	10.0	17.2	
HF	3.2	15 ± 2	PhŎH	10.0	18.0	
PhCO ₂ H	4.25	11.1	$CH_2(CN)_2$	11.0	11.0 ^e	
CH ₃ CŌ ₂ H	4.75	12.3	F ₃ CCH ₂ OH	12.4	23.6	
PhŇH3 [∓]	4.6	3.6^{d}	(ČH ₃ SO ₂) ₂ CH ₂	12.7	15.0	
HN ₃	4.7	7.9 ^e	CH ₃ CONH ₂	15.1	25.5	
\sim	4.8	7.3'	CH₃OH	15.5	29.0	
PhSO ₂ H	3.5	7.1	H_2O	15.75	32	
$C_5H_5NH^+$	5.2	3.4 ^d	-			

457

^a Estimated by the H_0 method; in pure H₂O their acidities are leveled to that of H₃O⁺ (pK_a = -1.75). ^b From measurements made in our laboratory, unless otherwise noted. ^cMcCallum, C.; Pethybridge, A. D. Electrochim. Acta 1975, 20, 815-818. ^dReference 8d. ^eReference 8c. ⁷Reference 34.

leveled in Me_2SO to that of Me_2SOH^+ , just as they are leveled to that of H_3O^+ in H_2O . For strong oxygen acids such as picric acid and 4-chloro-2,6-dinitrophenol, which form highly delocalized anions on dissociation, acidities do not differ greatly in H_2O and Me_2SO . As the oxygen acids in Table I become weaker, charge delocalization in the anion decreases and the difference in acidity in H_2O vs Me_2SO (ΔpK_a) increases from near zero for picric acid to 15 pK_a units for the weakest acids, MeOH and H_2O . This change is due primarily to the strong H-bond donor properties of the water solvent, which achieve maximum effectiveness toward localized ions such as F⁻, F₃CCH₂O⁻, MeO⁻, or HO⁻. The strong H-bond acceptor properties of H₂O make PhNH₃⁺ and pyridinium ions (but not the NH_4^+ ion) weaker acids in H_2O than in Me_2SO . (Me₂SO is also a good H-bond acceptor and solvates cations well.) Solvation of the $CH(CN)_2$ by H_2O and Me_2SO appears to be nearly equal.

Acidities in Solvents of Low Dielectric Constant. Ion-Pair pK_a 's. Ion-pair acidity scales in cyclohexylamine (CHA),⁶ DME, THF, or other solvents of low dielectric constant⁷ complement that in Me_2SO in some respects but are more limited in scope. These scales were originally anchored arbitrarily on the $H_p K_a$ = 18.49 for 9-phenylfluorene (9-PhFlH) in $H_2O/$ sulfolane, but more recently they have been anchored on the pK_a of fluorene in Me₂SO (22.3 on a per-hydrogen basis).¹¹

The size of ion-pairing effects will depend somewhat on the nature of the cation. For example, with Li⁺ counterion in CHA, PhC=CH appears to be a stronger acid than in Me₂SO by 6.1 pK units, but with Cs^+ counterion in DME $\Delta p K$ is only 2.4 units.¹² Ion-pairing effects of anions with K⁺ counterion are of little or no importance in dilute (millimolar) Me₂SO solution, except for strongly chelating anions such as that formed from CH₃COCH₂COCH₃. A method for detecting such ion-pairing effects and a spectroscopic method for measuring ion-pair association constants (K_{as}) have been devised.^{13a} Ion pairing stabilizes the anion and leads to an apparent acidity increase. Small corrections of the p K_{a} values are therefore needed. For chelating anions the size of K_{as} increases along the series K⁺ < $Na^+ < Li^+$.

Acidities in Other NHBD Solvents. An acidity scale in N-methylpyrrolidin-2-one (NMP) has also been established by using the overlapping indicator method.⁹ Relative acidities in NMP and Me₂SO correlate beautifully (see Figure 5 in ref 9), and the absolute acidities do not differ greatly. Ion-pairing association constants with K^+ counterion for chelating anions and homohydrogen bonding constants for phenols^{13b} are also similar in NMP and Me₂SO. Since differences in free energies of transfer from $H_2\Theta$ to solvents such as HMPA, Me₂SO, NMP, DMF, and MeCN do not differ greatly,¹⁴ we can expect relative acidities in Me_2SO to provide a good model for those in these NHBD solvents. Differences in free energies of transfer of the proton in these solvents may be appreciable, however, and can lead to sizable differences in absolute acidities. For example, the pK_a 's for PhOH in Me₂SO, NMP,⁹ and MeCN^{8d} are 18.0, 20.1, and 27.2, respectively.

Acids in the pK_a range 32–35 are difficult to measure in Me₂SO ($pK_a = 35$) because of the leveling effect of the solvent.¹⁵ Very weak acids such as amines, alkyl sulfides or ethers, benzenes, alkylbenzenes, alkenes, and alkanes are not deprotonated by MeSOCH₂K in Me_2SO , showing that their pK_a 's are above 35. Conceivably, the pK_a 's for some of these compounds could be measured in a more weakly acidic solvent such as HMPA, but problems with ion pairing can be expected to increase. It is possible to obtain at least a rough estimate of the pK_a 's of some of these compounds by extrapolation, however.¹⁶

⁽¹¹⁾ Kaufman, M. J.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1987, 109, 6092-6097.

⁽¹²⁾ Bordwell, F. G.; Drucker, G. F.; Andersen, N. H.; Denniston, A. D. J. Am. Chem. Soc. 1986, 108, 7310-7313. See ref 11 and Kaufman et al. (Kaufman, M. J.; Gronert, S.; Burs, D. A.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1987, 109, 602-603) for additional examples and discussion.

^{(13) (}a) Olmstead, W. N.; Bordwell, F. G. J. Org. Chem. 1980, 45, (a) (a) (b) Bordwell, F. G.; McCallum, R.; Olmstead, W. N. J. Org. Chem. 1984, 49, 1424-1427.
 (14) Alexander, R.; Ko, E. C. F.; Parker, A. J.; Broxton, T. J. J. Am. Chem. Soc. 1968, 90, 5049-5069.

⁽¹⁵⁾ Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem.

^{1980, 45, 3295-3299.}

⁽¹⁶⁾ Bordwell, F. G.; Algrim, D. J. J. Am. Chem. Soc. 1988, 110, 2964-2968.

		Τs	able II			
			***	~		
Equilibrium	Acidities	in	Dimethyl	Sulfoxide	at 25 '	°C
-			•			

Eq	Ullibrium Acidities in	Dimethyl Sulfoxide at 25 °C	
acid	pK _a	acid	pK_a^a
5-nitrobarbituric acid	0.8	PhCONHOH	13.65
$(\mathbf{F}_{3}\mathbf{CSO}_{2})_{2}\mathbf{CH}_{2}$	2.1	2,3-dihydroxynaphthalene	13.7
2,4-dinitronaphthol	2.1	N-acetyloxindol	13.8
PhN^+HMe_2	2.45	1,2,3-triazole	13.9
F ₃ CCO ₂ H	3.45	uracil	14.1
saccharin	4.0	adenine	14.2
$PhCH(CN)_2$	4.2	$\rm CH_3 COCH_2 CO_2 Et$	14.2
2,6-dinitrophenol	4.9	$(MeSO_2)_2CHPh$	14.3
2,4-dinitrophenol	5.1	2,5-diphenylcyclopentadiene	14.3
$F_3CSO_2CH_2COPh$	5.1	9-cyano-9,10-dihydroanthracene	14.3
PhCOSH	5.2"	0	14.4
Cl_2CHCO_2H	6.4 ^c	PhSCH	
$PhSCH(SO_2Ph)_2$	5.55		
F ₃ CCH ₂ SO ₂ NHPh	5.7	N	
$2,4,5$ - $Cl_3C_6H_2SH$	6.0	CH_COCH_CO_Ft	144
Ph ₃ P'CH ₂ COPh	6.1	fluorenone henzylimine	14.4
$Ph_{3}P^{+}CH_{2}CN$	7.05	F.CSO.CH.Ph	14.55
PhSO ₂ H	7.1	succinimide	14.6
PhSO ₂ CH ₂ NO ₂	7.1	$CH_{*}C(=S)NHPh$	14.0
PhSeH	7.16	1 2 4-triazole	14.75
	7.4^{d}	H	14.10
Me			14.75
Me			
		Ĩ\	
HONO	7.5	Me	
HONO HNICH CO H	7.5 7 5e		14.8
CHCHCH NO	7.5		
(C, \mathbf{F}) CHCN	7.05	fluorenone phenylhydrazone	14.9
	1.55	$MeCH(COCH_3)_2$	15.05
9-overofluoreno	0.2	1,2,3-triphenylindene	15.2
barbituria agid	0.0 9 A	PhCH ₂ SH	- 15.4
(CH CO) CH	0,4	9-(phenylthio)fluorene	15.4
H NTCH CO Ft	0.0	9-(benzylsulfinyl)fluorene	15.7
$n_{3}N \cap C H \cap C H$	0.7	PhSO ₂ NHNMe ₂	15.8
F CSO NU	9.0	nitrocycloheptane	15.8
13050214112	5.1	C _a F ₅ CH ₂ CN	15.8
	10.1	nitrocyclopentane	16.0
$\int O $		$PhSO_2NH_2$	16.1
S s		(PhSe) ₂ CHPh	16.15
02		fluorenone oxime	16.2
PhSH	10.3	$CH_2(CO_2Et)_2$	16.4
PhCOCH ₂ CN	10.2	benzimidazole	16.4
1,3-cyclohexanedione	10.3^{d}	$CH_3CH(SO_2Et)_2$	16.7
9-(methoxycarbonyl)fluorene	10.35	$NO_2NH(=NH)NH_2$	16.7
fluoradene	10.5'	3-((phenylsulfonyl)methyl)pyridine	16.7
(F ₃ C) ₃ COH	10.7	isonicotinic hydrazide	16.8
$p-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4\mathrm{OH}$	10.8	2,6-di- <i>tert</i> -butylphenol	16.85
\sim	10.8	$PhC = S)NH_2$	16.9
$\langle (\mathbf{F}) \downarrow \langle \mathbf{F} \rangle$		H_2NCN	16.9
		$PhCH_2SO_2F$	16.9
$F_3CCH(CO_2Me)_2$	10.8	Me_2CHNO_2	16.9
PhCO ₂ H	11.0	0 II	16.95
$F_3CSO_2CH_2SPh$	11.0	PhSCHCI2	
$CH_2(CN)_2$	11.0		
	11.2	N	
		9 indenene	10.05
\times			16.90
PhSO ₂ CH ₂ COPh	11.4	2 puridono	17.0
	11.9	DISO NUNU	17.0
s≕()nH	11.8	2-nanhthol	17.1
honro 182 triangle	110	PhCOCH-SPh	171
DENZO-1,2,3-UNAZOIE	11.9	F.CCONH.	17.15
(PhSO.)-CH.	12.0	CH ₂ NO ₂	17.2
PhCH _a NO ₂	12.20	nicotinic hydrazide	17.5
CH ₂ CO ₂ H	12.3	CH ₃ SO ₂ NH ₂	17.5
9-(ethylsulfonyl)fluorene	12.3	PhCOCH ₉ Ph	17.65
9-isocvanofluorene	12.3	nitrocyclobutane	17.8
pentanhenvlovclopentadiene	12.5	nitrocyclohexane	17.9
5-fluorouracil	12.7	9-phenylfluorene	17.9
5,5-diethylbarbituric	13.0	(CH ₃ CO) ₂ NH	17.9
(CH ₃ CO) ₂ CH ₂	13.3	cyclopentadiene	18.0
2-thiopyridone	13.3	PhOH	18.0
$(PhCO)_{2}CH_{2}$	13.35	$(PhSO)_2CH_2$	18.1
(PhNH) ₂ C=S	13.4	$(CH_3)_3S^+$	18.2

Table II (Continued)

acid	$\mathrm{p}K_{\mathbf{a}}{}^{a}$	acid	pK_a^a
orindole	18.98	FaCSOaCHMea	91.8
(E+O) D(O)NUDL	10.2	2 mothylindono	21.0
	10.0		21.0
$p - CH_3C_6H_4SO_2CH_2N = C$	18.4	$CH_3CONHNH_2$	21.8
$CH_3C(=S)NH_2$	18.45	$PhCH_2CN$	21.9
PhCON(Me)OH	18.5	9-cyano-9,10-dihydrophenanthrene	21.9
N-methyloxindole	18.5	nicotinamide	22.0
imidezole	19.6	CH-COCH-SO-Ph	99.1
DLCOCU G.DL	10.0		22.1
PhOUCH ₂ SePh	18.6	$PnC = CCH_2SO_2Pn$	22.1
1,3-dimethylbenzoimidazolium ion	18.6	4,5-methylenephenanthrene	22.2
PhCOCHPh ₂	18.7	2-thiophenecarboxamide	22.3
(PhCH _a) _a C=0	187	PhSO ₂ CHPh ₂	22.3
F CSO CH	19.75	2 ((nhanylaulfonyl)mathyl)furan	20.0
	18.70	2-((prenyisulionyi)metnyi)iuran	22.3
PhCONHNH ₂	18.9	9-methylfluorene	22.3
4-chloro-2-nitroaniline	18.9		22.35
PhCOCH ₂ SCH ₂ Ph	19.0		22.00
Me-SiCH(CO-Et)	19.0		
DLCU SO SCU DL	10.1	BECH (CNUM	22.4
	19.1	Photecnin	
$Ph_2P(S)CH_2P(S)Ph_2$	19.3		00 F
2-phenylindene	19.4	$CH_2 = CHCH_2SO_2Ph$	22.5
PhSO_NHC(==NH)NH_	19.45	3-methylindene	22.5
		Ph ₃ PCH ₃ +	22.5
PhCOCH_S-	19.45	2-furancarhovamide	22.55
		2-rurancar boxannue	22.00
PhCH.N=CHCO.Ft	19.5	nuorene	22.0
(DLNUL) C-C	10.5	$PhCH_2CO_2Et$	22.6
(PNNH) ₂ C=U	19.55	phenothiazine	22.7
$NH_2C(=NH)NHCN$	19.6	(PhS) ₀ CH	22.8
pyrazole	19.8	numola	22.0
carbazola	19.9	pyrrote	23.0
	10.0	PhCH(Me)CN	23.0
PhCH ₂ SO ₃ Ph	19.9	PhOCH ₂ CONH ₂	23.0
PhCH ₂ COCH ₃	19.9	1-indanone	23.04
10-cvano-9-methylanthracene	20.0	1-maanone	20.0
indene	20.1	DI COLL CONTR	$29.0^{\circ} (pR_{a}^{-})$
	20.1	PhSCH ₂ CONH ₂	23.0
	20.1	$PhSeCH_2CONH_2$	23.1
$PhCH = CHCH_2SO_2Ph$	20.2	2.3.4-trimethylimidazolium ion	23.2
PhCOCHF ₂	20.2	1-eminonurimidine	23.21
PhSO ₂ CH ₂ PPh ₂	20.2		20.5
PLCOCH NDL	20.2	$(H_2NNH)_2 C = 0$	23.3
	20.3	PhCONH ₂	23.35
p-NO ₂ C ₆ H ₄ CH ₃	20.4	(Ph _o C=CH) _o CHPh	23.4
F ₃ CSO ₂ CH ₂ Me	20.4	PhSO-CH-Ph	23.4
i-PrCH(CO_Et)	20.5		20.4
	2010	HCONH ₂	23.45
A N .0	20.7	F_3CCH_2OH	23.45
		PhSO ₂ CH ₂ Cl	23.8
		$(PhCH_{a})_{a}$	23.9
$\checkmark \checkmark$		M.OCH CONH	20.0
0 0	20.7		20.9
	2011	t-BuSCH ₂ CONH ₂	24.1
PhSCH ₂ Cr		$p-F_3CSO_2C_6H_4CH_3$	24.1
N.		2-pyrrolidone	24.2
Te		3-((nhenyleulfonyl)methyl)thionhene	24.2
13		o-((phenyisunonyi)memyi)mophene	24.2
2-benzylbenzothiazole	20.8	cyclonexanone oxime	24.3
		$Ph_2C = NCH_2Ph$	24.3
й _сн,	20.8	benzoxazole	24.4
p-MeCeHaSCH		CH,COCH,CH.	24.4
CH2		HANCOAFt	24.6
Ň			24.U
Ts		t-BuOn(CO ₂ Et) ₂	24.7
^ ^	00.0	$H_2NCH_2CONH_2$	24.7
(α) (α)	20.9"	PhCH ₂ CONH ₂	24.7
		PhCOCH	24.7
$\gamma \land \gamma$		Ph.NH	24.95
			24.30
$\propto \sim$		cyclobutanone	25.05
		CH ₃ SO ₂ OPh	25.2
\checkmark \checkmark		PhCH ₂ SO ₂ NMe ₂	25.2
	24.7 ^h (p K_{μ}^{II})	.0.0	or of
indole	20.95	C P	25.2
PhCH-NNHPh	91 1		
	41.I 01 1	\sim	
rhoudr ₂ urn	21.1	4-benzylpyridine N-oxide	25.2
$(H_2N)_2C = S$	21.1	2-aminonyrimidina	25.2
PhCONHC(=NH)NH,	21.25	2-annopyrimume	20.0
PhSO ₂ CH ₂ SiPh ₂	21.3	н	25.5
$PhCH(=S)NM_{a}$	91.9	\sim N \sim	
$\Gamma \Pi \cup \Pi_2 \cup (= \Im) IN IME_2$	21.3		
PhSCH ₂ CO ₂ Me	21.4		
CH ₃ CONHPh	21.45	$\sim \smile \sim$	
isonicotinamide	21.5	CH ₃ CONH ₂	25.5
	01 5	Ph.C=CHCH.Ph	25.6
rnu(Me)=INNHPh	21.5		20.0
phenoxazine	21.65	$CH_3C(=S)NMe_2$	25.65
PhCOCH ₂ F	21.7	$Ph_2C = CHCHPh_2$	25.8
9-(trimethylsilvi)fluorene	21.7	c-C ₅ H ₉ COPh	25.8
1-acetulnymidine	21.8	cyclopentanone	25.8
4-00011/01/01/00	71 X	cvciopentanone	20.8

Table	TT (Continued
TUNIC	11 1	Commueu

لانده	- V G	(Continueu)		
acia	pr _a -	acid	pr _a "	
H	26.1	CH ₃ OH	29.0	
Me Me		thiazole	29.4	
<u>)``'(</u>		p-PhSO ₂ C ₆ H ₄ CH ₃	29.85	
Me Me		2-benzylthiophene	29.9	
H	26.1	xanthene	30.0	
\bigcirc		3-benzylpyridine	30.15	
		(CH ₃) ₂ CHOH	30.25	
		4-methylthiazole	30.3	
c-C ₄ H ₇ COPh	26.15	camphor	30.4	
PhNHNHPh	26.2	√~ ^s ∖	30.6	
Me ₂ CHCOPh	26.25	Me - C S - H		
2-piperidone	26.4			
cyclohexanone	26.4	$PhNH_2$	30.6	
CH ₃ COCH ₃	26.5	Ph ₃ CH	30.6	
4-aminopyridine	26.5	∕_s	30.65	
CH ₂	26.6	<		
F3CSU2CH CHa			90.7	
AC H COPh	26.7		30.7	
	26.7	PhSC n ₂ Ph	30.8	
4-benzyipyname	20.7	9-methylanthracene	31.1	
DECUDE	20.8	$(H_3SU_2CH_3)$	31.1	
$(\mathbf{H} \mathbf{N}) \subset \mathbf{-} \mathbf{O}$	20.8	(n-PIS) ₃ CH	31.3	
hangathiagola	20.55	UH ₃ UN	31.3	
	27.0		31.2	
PhOU N=0	21.2 97 A	Pn_2Un_2	32.2	
FILCF12N=C	21.4	(CH ₃) ₃ COH	32.2	
$(\mathbf{F}_{+}\mathbf{O}) \mathbf{P}(\mathbf{O})\mathbf{C}\mathbf{H} \mathbf{D}\mathbf{h}$	21.4	0 1	$(33)^{k}$	
$(E(U)_2 \Gamma(U) C \Pi_2 \Gamma \Pi)$	21.55 97 G	Ph-S-CHa		
2-methylbenzotmazole	21.0			
2-annopyridine	21.7	N		
U II	27.7	Me		
PhậCH ₃		$CH_3S(O)CH_3$	35	
		4-methylpyridine	(35)*	
'' Ts		,s	(39) ^k	
cycloheptanone	27.8	$\langle \rangle$	(00)	
9-phenylxanthene	27.9	`s—⁄		
PhSO ₂ CH ₂ OPh	27.9	NH。	$(41)^{k}$	
4-methyloxazole	28.0	2-methylnaphthalene	$(42)^{k}$	
PhOCH _o CN	28.1	PhSCH	$(42)^{k}$	
[(CH ₂) ₂ CH] ₂ C=O	28.2	2-methylthiophene	$(42)^{k}$	
2-benzylpyridine	28.2	2-methylfuran	$(43)^{k}$	
c-CoHrCOPh	28.25	PhCH	$(43)^{k}$	
PhSO ₂ CH ₂ F	28.5	CH ₃ =CHCH ₂	$(44)^{k,l}$	
3-aminopyridine	28.5	CH ₃ SCH ₂	(45) ^k	
PhC=CH	28.7	PhOCH	$(49)^{k}$	
(EtO) P(O)CH_SiMe	28.7	CH	(56)*	
	= - · ·		()	

^a The pK_a's were selected from a list of about 1200 that have been measured in our laboratory. The pK_a's of oxygen acids have been corrected for homohydrogen bonding, and pK_a's of acids forming chelating anions have been corrected for ion pairing with K⁺. The ylides formed from cations are often reactive, and these values should be regarded as tentative. Most pK_a's were measured by using two or more indicators or standard acids and are believed to be accurate to ± 0.1 unit. ^bCourtot-Coupez, J.; Le Démézet, M. Bull. Soc. Chim. Fr. 1969, 1033-1039. ^cRitchie, C. D.; Lu, S., private communication. ^dArnett, E. M.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1987, 109, 809-812. ^e Hughes, D. L.; Bergan, J. J.; Grabowski, E. J. J. Org. Chem. 1986, 51, 2579-2585. ^fRitchie, C. D.; Uschold, R. E. J. Am. Chem. Soc. 1968, 90, 2821-2824. ^e Fried, H. E. Ph.D. Dissertation, Northwestern University, 1982. ^hStreitwieser, A., Jr Acc. Chem. Res. 1984, 17, 353-357. ⁱ Cornforth, F. W. Ph.D. Dissertation, Northwestern University, 1974. ^jShkurko, O. P.; Terekhova, M. J.; Petrov, E. S.; Mamaev, V. P.; Shatenshtein, A. J. J. Org. Chem. USSR (Engl. Transl.) 1981, 17, 260-264. ^k Values in parentheses were extrapolated by methods such as those described in ref 16. ⁱ From ref 52, assuming a BDE of 81 for the C-H bond in Ph₃CH.⁵¹

The Me₂SO Acidity Scale. Structural Effects on Acidities. In Table II we present data for equilibrium acidities in Me₂SO for over 300 compounds. The effects of structural variations on acidities for many of these have been discussed in papers from our laboratory, including the effects of cyclopropyl rings,²⁰ α -electron-

(17) Algrim, D.; Bares, J. E.; Branca, J. C.; Bordwell, F. G. 1978, 43, 5024-5026.

(18) In CHA a Brønsted-type extrapolation gives an ion-pair pK_a for toluene of 41, ^{7b} and two extrapolations from azine acidities in DME have given a value of 42.

(19) Terekhova, M. I.; Petrov, E. E.; Shkurko, O. P.; Mikhaleva, M.
H.; Mamaev, V. P.; Shatenshtein, A. I. J. Org. Chem. USSR (Engl. Transl.) 1983, 19, 405-408.

(20) (a) Bordwell, F. G.; Vanier, N. R.; Matthews, W. S.; Hendrickson, J. B.; Skipper, P. L. J. Am Chem. Soc. 1975, 97, 7160-7163. (b) Bordwell, F. G.; Bartmess, J. E.; Hautala, J. H. J. Org. Chem. 1978, 43, 3113-3116.
(c) Bordwell, F. G.; Branca, J. C.; Johnson, C. R.; Vanier, N. R. J. Org. Chem. 1980, 45, 3884-3889.

withdrawing groups,²¹ α -heteroatoms,²² phenyl groups,²³ phenylthio groups,²⁴ alkyl groups on C-H acids,²⁵ sp hybridization at carbon,²⁶ remote substituents (in

(21) (a) Bordwell, F. G.; Van Der Puy, M.; Vanier, N. R. J. Org. Chem.
 1976, 41, 1884–1885. (b) Bordwell, F. G.; Algrim, D. J. Org. Chem. 1976, 41, 2507–2508.

(22) (a) Bordwell, F. G.; Van Der Puy, M.; Vanier, N. R. J. Org. Chem.
 1976, 41, 1885–1886. (b) Bordwell, F. G.; Fried, H. E. Tetrahedron Lett.
 1977, 1121–1124.

(23) Bordwell, F. G.; Bares, J. E.; Bartmess, J. E.; McCollum, G. J.; Van Der Puy, M.; Vanier, N. R.; Matthews, W. S. J. Org. Chem. 1977, 42, 321-325.

(24) Bordwell, F. G.; Bares, J. E.; Bartmess, J. E.; Drucker, G. E.;
 Gerhard, J.; McCollum, G. J.; Van Der Puy, M.; Vanier, N. R.; Matthews,
 W. S. J. Org. Chem. 1977, 42, 326–331.

(25) (a) Bordwell, F. G.; Drucker, G. E.; McCollum, G. J. J. Org. Chem.
1976, 41, 2786. (b) Bordwell, F. G.; Bartmess, J. E.; Hautala, J. A. J. Org. Chem. 1978, 43, 3095-3101. (c) Ibid. 1982, 47, 2504-2510. (d) Bordwell, F. G.; Bausch, M. J.; Wilson, C. A. J. Am. Chem. Soc. 1977, 109, 5465-5470.

fluorenes²⁷ and in acetophenones²⁸), ion pairing,¹³ steric inhibition of resonance,²⁹ alkyl groups in alcohols,¹⁵ aromaticity,³⁰ thiol groups,³¹ methyl effects on cyclopentadienes and indenes,³² and homohydrogen bonding in phenols.^{13b} Papers from other laboratories have discussed the first and second ionization constants of 9,9'-bifluorenyl,³³ the effects of cyclization on acidities of ketones and carboxylic esters containing β -dicarbonyl groups,³⁴ and the effects of aza groups on acidities.³⁵ In the accompanying paper we compare some of these structural effects on solution acidities with those on intrinsic gas-phase acidities and discuss insights into solvation effects derived therefrom.³⁶

The Me₂SO acidity scale has proved useful in several ways. Jorgensen and his students have used the pK_a 's as one of the parameters in an interactive computer program, CAMEO, that is being designed to predict products of organic reactions, given the starting materials and conditions.³⁷ By combining pK_a values in Me₂SO for 21 delocalized carbanions and 5 phenoxide ions with calculated π delocalization energies of 6 carbocations, Arnett has developed a "master equation" to correlate data for 30 reactions (r = 0.9948). Equations of this type are capable of providing a simple means of estimating heterolysis energies in solution for thousands of bonds that give resonance-stabilized anions and cations on cleavage.³⁸ In our laboratory we have found that rates $(\log k_{obsd})$ of reactions between the conjugate bases of various families of acids and electrophiles can be correlated generally with pK_{HA} values to give linear Brønsted plots,³⁹ as will be brought out in the next section.

Acid-Base Families and the Brønsted Relationship. For acids in Table II containing an aromatic nucleus, Hammett-type families can be prepared by placing substituents in remote positions. Taft-type families such as GCH₂CONH₂ and GCH₂COPh can also be prepared, and other types of families can be constructed from various groups of acids, e.g., an azole family (pyrrole, pyrazole, imidazole, etc.). The ρ values in Table III, when combined with literature σ and σ_p^-

(26) Bordwell, F. G.; Algrim, D.; Fried, H. E. J. Chem. Soc., Perkin Trans. 2 1979, 726-728.

(27) Bordwell, F. G.; McCollum, G. J. J. Org. Chem. 1976, 41, 2391-2395.

(28) Bordwell, F. G.; Cornforth, F. W. J. Org. Chem. 1978, 43, 1763-1768.

- (29) Bordwell, F. G.; Drucker, G. E. J. Org. Chem. 1980, 45, 3325–3328.
 (30) Bordwell, F. G.; Drucker, G. E.; Fried, H. E. J. Org. Chem. 1981, 46, 632–635.
- (31) Bordwell, F. G.; Hughes, D. L. J. Org. Chem. 1982, 47, 3224-3232.
 (32) Bordwell, F. G.; Bausch, M. J. Am. Chem. Soc. 1983, 105, 6188-6189.
- (33) Streitwieser, A., Jr. Acc. Chem. Res. 1984, 17, 353-357.
- (34) Arnett, E. M.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1987, 109, 809-812.
- (35) Terekhova, M. I.; Petrov, E. S.; Mikhaeleva, M. A.; Shkurko, O. P.; Mamaev, V. P.; Shatenshtein, A. I. J. Org. Chem. USSR (Engl. Transl.) 1982, 18, 6-10.
- (36) Taft, R. W.; Bordwell, F. G. Acc. Chem. Res., accompanying paper in this issue.
- (37) Jorgensen, W. L.; Gushurst, A. J. J. Org. Chem. 1986, 51, 3513-3522.
- (38) (a) Arnett, E. M.; Molter, K. E. Acc. Chem. Res. 1985, 18, 339-346.
 (b) Arnett, E. M.; Chawla, B.; Amarnath, K.; Whitsell, L. G., Jr. Energy Fuels 1987, 1, 17-23. Arnett, E. M.; Whitsell, L. G., Jr.; Amarnath, K.; Cheng, J.-P.; Marchot, E. J. Macromol. Chem., Macromol. Symp. 1988, 13/14, 21-31.
- (39) For a review, see: Bordwell, F. G.; Hughes, D. L.; Cripe, T. A. in Nucleophilicity; Harris, M. J., McManus, S. P., Eds.; Advances in Chemistry 215; American Chemical Society: Washington, DC, 1987; Chapter 9.

Table III Hammett ρ Values for Equilibrium Acidities in Me₂SO Solution at 25 °C

acid family	pK_a^a	ρ ^b	n ^f	R^2	ref
ArCH(CN) ₂	4.2	4.2 ± 0.1	5	0.997	g
ArSO ₂ H	7.1	2.4 ± 0.2	4	0.986	h
ArSH	10.2	4.8 ± 0.3	5	0.988	31
ArCO ₂ H	11.0	2.6	9		i
ArCONHOH	13.65	2.6	4	0.989	j
ArOH	18.0	5.3 ± 0.1	8	0.991	13b
ArCH ₂ COCH ₃	19.9	4.7	4	0.999	k
ArNHCOCH ₃	21.45	4.1	6		k
ArCH ₂ CN	21.9	5.9	8	0.939	l
ArCH(NC ₄ H ₄ O)CN	22.4	7.0 ± 0.1	7	0.996	m
fluorenes	22.6	$7.5 \pm 0.53^{\circ}$	14	0.939	27
fluorenes	22.6	5.7 ± 0.3^{d}	7	0.989	g
phenothiazines	22.7	5.21	5	0.982	n
$ArCH_2SO_2Ph$	23.4	4.8	10	0.999	g
ArCOCH ₃	24.7	3.55 ± 0.05	14	0.998	28
ArNHPh	24.95	5.4	3	0.997	n
GCH ₂ CONH ₂	25.5	3.1 ± 0.3	13	0.976	22b
ArNH ₂	30.6	5.7 ± 0.1	6	0.998	0
$ArCHPh_2$	30.6	5.7 ± 0.3^{d}	7	0.989	р
9-methylanthracenes	36.1	>10 ^e	9		l

^a pK_a of the parent acid. ^b The Hammett plots are restricted for the most part to meta points; σ_{m-OMe} is 0.02 in Me₂SO, however, rather than the value of 0.12 derived from benzoic acids in water.²⁸ The σ_p^- values for p-NO₂, p-RCO, and like substituents are made abnormally high, in part, by substituent solution-assisted resonance (SSAR) effects.³⁶ ° For 2- and 2,7-substituents; ρ is abnormally high because PhCO, CN, etc. groups are included and the 2and 2,7-positions have some para character. ^dFor 3-substituents. ${}^{e}\rho$ is abnormally high; the correlation is poor since para substituents are used and steric effects in the 10-position are severe. ^fNumber of substituents. ^gBranca, J. C. Ph.D. Dissertation, Northwestern University, 1979. ^hHughes, D. L. Ph.D. Dissertation, Northwestern University, 1981. Ritchie, C. D.; Uschold, R. E. J. Am. Chem. Soc. 1968, 90, 2821-2824. Hughes, D. L.; Whang, Y., unpublished results. ^kChehel-Amiran, M., unpublished results. ¹Bares, J. E. Ph.D. Dissertation, Northwestern University, 1976. ^m Mueller, M. E., unpublished results. ⁿCheng, J.-P. Ph.D. Dissertation, Northwestern University, 1987. ^oAlgrim, D. J. Ph.D. Dissertation, Northwestern University, 1981. ^pTwyman, C. L. unpublished results.

values,⁴⁰ provide a means of estimating pK_a 's for hundreds of additional acids.

Rates of reactions of electrophiles with the conjugate bases of acids within a family can be studied under conditions where steric, as well as solvent, effects are kept constant. Plots of log k_{obsd} vs pK_{HA} values give linear Brønsted plots, which are similar to Hammett plots but are much more precise since they do not depend on an arbitrary model (the pK_a 's of benzoic acids in water). These Brønsted plots have been found to be linear for nearly all combinations of anions with electrophiles tried to date. The types of reactions include $S_N 2$,⁴¹ $S_N 2'$,⁴² E 2,⁴³ $S_N Ar$,⁴⁴ H_T ^{+,45} and e_T ^{-,46} This means that for all of these reactions the nucleophilicities of the bases depend on only two factors, (a) their basicity, as measured by pK_{HA} , and (b) the sensitivity of the reac-

⁽⁴⁰⁾ See Exner^{1b} for an extensive list of σ vs σ ⁻ constants. The σ ⁻ values for the NO₂, RCO, CN, and RSO₂ groups are exalted in Me₂SO in part by substituted solvation-assisted resonance (SSAR) effects.³⁶

⁽⁴¹⁾ Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc, 1986, 108, 7300-7309 and references cited therein.

⁽⁴²⁾ Bordwell, F. G.; Cheng, J.-P.; Clemens, A. H. J. Am. Chem. Soc. 1987, 109, 1773–1782.

 ⁽⁴³⁾ Bordwell, F. G.; Mrozack, S. R. J. Org. Chem. 1982, 47, 4813–4815.
 (44) Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc. 1986, 108, 5993–5996.

⁽⁴⁵⁾ Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc. 1985, 107, 4734-4744.

⁽⁴⁶⁾ Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1985-1988.

tion to changes in basicity, as measured by the slope of the Brønsted plot, β_{Nu} . β_{Nu} values usually fall in the range 0.2–0.5 for S_N2 , S_N2' , and E2 reactions and in the range 0.5–1.0 for S_NAr , H_T^+ , and e_T^- reactions.

Reactions of PhCH₂Cl with families of delocalized anions bearing various types of donor atoms have been found to have similar β_{Nu} values. This has allowed the rate constant order for anions of the same basicity, but with different donor atoms, reacting with electrophiles such as PhCH₂Cl to be approximated: $S^{-}(10^{3}) > C^{-}$ $(1.0) > O^{-}(0.3) > N^{-}(0.1)$.⁴⁷ For reactions having β_{Nu} values of 0.3 the total rate span is about 10⁹ for delocalized anions derived from the acids in Table II, but the rate span increases exponentially as β_{Nu} increases. Thus, for some proton- or single-electron-transfer reactions, where β_{Nu} can approach unity, the rate span will be of the order of $10^{\overline{30}}$.

Acidities, Basicities, Reactivities, and Redox **Potentials in Me₂SO.** A plot of the oxidation potentials, $E_{ox}(A^{-})$, of 2- and 2,7-substituted fluorenide ions vs the pK_{HA} values of their conjugate acids is linear with a slope near unity, indicating that substituents in the 2- and 2,7-positions do not stabilize (or destabilize) 9-fluorenyl radicals.⁴⁸ This explains the linearity of Brønsted plots, with slopes near unity, observed for 2-G- and $2,7-G_2FlH^-$ ions reacting by single-electron transfer (SET) with acceptors such as 1,1-dinitrocyclohexane.⁴⁶ On the other hand, 9-G substituents have strong stabilizing (or destabilizing) effects on 9-G-Fl[•] radicals, the size of which can be measured, relative to 9-H-Fl[•], by eq 2.48

$$\Delta E_{\rm s} = 1.37 \Delta p K_{\rm HA} + 23.06 \Delta E_{\rm ox}({\rm A}^{-}) \tag{2}$$

In eq 2, ΔE_s provides an estimate of the effect of the 9-G substituent on the energy of the 9-G-Fl' radical, relative to that of the 9-H-Fl[•] radical. The ΔE_s values range from a stabilizing effect of as much as -10 kcal/mol for $G = R_2 N$ to a destabilizing effect of +2 kcal/mol for G = RSO_2 .⁴⁸ These ΔE_s values can be equated with the relative homolytic bond dissociation energies (Δ BDEs) of 9-C-H bonds in the corresponding fluorenes, 9-G-Fl-H.

Absolute BDEs for acidic C–H bonds in hydrocarbons or their derivatives can be estimated from eq 3, which

BDE =
$$1.37 pK_{HA} + 23.06E_{ox}(A^{-}) + 55.9$$
 (3)

is based on a thermodynamic cycle derived by Nicholas and Arnold.49 (Equation 3 was derived earlier in a different way by Friedrich and used to estimate BDEs in water for hydroquinone and phenol.⁵⁰) The BDEs in Me₂SO solution for the acidic C-H bonds in fluorene, indene, cyclopentadiene, 9-methylanthracene, diphenylmethane, triphenylmethane, xanthene, phenol, thiophenol, and aniline estimated in this way agree satisfactorily with gas-phase BDEs.⁵¹

The pK_a values for a few hydrocarbons, including cyclopentadiene (CpH₂), toluene, propene, and iso-

(48) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1979-1985

(51) Bordwell, F. G.; Cheng, J.-P.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1988, 110, 1229-1231.

butane, relative to triphenylmethane have been estimated from the algebraic sum of the differences in their BDEs and the differences in the oxidation potentials of their conjugate bases.⁵² For example, the $E_{ox}(A^{-})$ value for the CpH⁻ ion was found to be less negative than that of the Ph_3C^- ion by 18 kcal/mol. When the 6 kcal/mol difference in the BDEs of CpH_2 (81 kcal/ mol) and Ph₃CH (75 kcal/mol) was taken into account, an estimated difference in acidities of 8.8 p K_{a} units was arrived at. If we use the pK_{a} of 30.6 for $Ph_{3}CH$ in Me_2SO as a reference, the estimated relative pK_a for CpH_2 is then 22. But, as Breslow points out, the pK_a of 22 rests in part on the BDE of 75 for Ph₃CH, which has not been checked by modern methods.⁵² Indeed, if the BDE of 81 \pm 3 estimated by eq 3 is used,⁵¹ the pK_a calculated for CpH_2 becomes 17.6, which is in good agreement with the value of 18.0 determined in Me₂SO (Table II).

By combining pK_{HA} values with $E_{ox}(A^{-})$ and $E_{ox}(HA)$ values, according to eq 4, it is possible to estimate

$$pK_{HA}^{*+} = pK_{HA} + 23.06[E_{ox}(A^{-}) - E_{ox}(HA)]/1.37$$
(4)

acidities of radical cations of the type HA⁺⁺, where A may be S, O, N, C, and the like.⁵³ Direct experimental determination of pK_{HA}^{*+} values presents a formidable problem since establishment of the equilibrium HA⁺⁺ \Rightarrow H⁺ + A[•], which involves two radical species, is difficult, as is the measurement of the radical concentrations. The method is of particular value for estimating acidities of radical cation C-H acids, which generally have $pK_{HA}^{\bullet+}$ values of 0 to -30.54 A similar method, which is also based on a thermodynamic cycle, has been used to estimate the acidities of the conjugate acids of radical anions.55

For single-electron-transfer (SET) reactions from fluorenide carbanions to an acceptor of the type 1,1- $(NO_2)_2$ -c-C₆H₁₀ or 1-NO₂-1-Ts-c-C₆H₁₀, Marcus-type plots of log k_{obsd} vs $E_{ox}(A^-)$ have been found to be linear in several instances.^{46,56} Recently, a family of seven 9-R₂N-fluorenide ions having basicities that vary over a relatively small range (p K_{HA} 's = 20.4 ± 2.2) but have $E_{ox}(A^{-})$ values varying over a substantial range (0.427) V; 9.8 kcal/mol) has proved useful for testing for the presence of an SET component in S_N 2-type substitution reactions.⁵⁸ This family gave a linear Marcus-type plot for reactions with F₃CCH₂I, a known SET acceptor,⁵⁹ and the log k_{SET} values calculated with the Marcus equation, with λ and ΔG° values derived according to the method of Eberson,⁶⁰ were found to correspond well

(52) Jaun, B.; Schwarz, J.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 5741-5748.

(53) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 2473–2474. The thermodynamic cycle on which this method was based was derived by Nicholas and Arnold. 49

 (54) Cheng, J.-P. Ph.D. Dissertation, Northwestern University, 1987.
 (55) (a) Parker, v. D.; Tilset, M.; Hammerich, O. J. Am. Chem. Soc. 1987, 109, 7905-7906. (b) Bausch, M. J., unpublished results privately communicated.

(56) Bordwell, F. G.; Bausch, M. J.; Wilson, C. A. J. Am. Chem. Soc. 1987, 109, 5465–5470. Over large ranges of ΔG° the Marcus equation predicts curvature, but over relatively small ranges in the endergonic region the curve is flat and essentially linear.⁵⁷ (57) Klinger, R. J.; Kochi, J. J. Am. Chem. Soc. **1982**, *104*, 4186–41969

(58) Bordwell, F. G.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1987, 109, 8112-8113; 1988, 110, in press.
(59) Bordwell, F. G.; Wilson, C. A. J. Am. Chem. Soc. 1987, 109,

5470-5474.

⁽⁴⁷⁾ Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc. 1984, 106, 3234-3239.

⁽⁴⁹⁾ Nicholas, A. M. P.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165-2179.

⁽⁵⁰⁾ Friedrich, L. E. J. Org. Chem. 1983, 48, 3851-3852.

with the experimental $\log k_{obsd}$ values. Application of the test to reactions with Ph_2CHCl , which gives S_N2 kinetics and products with no evidence of radical-type products, gave linear Marcus-type plots and log k_{SET} values corresponding to the experimental log k_{obsd} values. It was concluded that the " S_N 2 reactions" of 9-R₂N-Fl⁻ ions with Ph₂CHCl are occurring by a radical pair mechanism. This approach promises to be of general use for elucidating the role of SET in reactions of families of anions with electrophiles.

Concluding Remarks. The Me₂SO acidity scale, for which about 300 representative values are given in Table II, furnishes (a) quantitative acidity data that can be related to intrinsic gas-phase data to provide information on solvation effects and (b) quantitative basicity data that can be related to reactivity data by means of Brønsted, Hammett, and Marcus equations. Combination of the pK_a data with electrochemical data can provide estimates of (a) relative radical stabilities, (b) homolytic bond dissociation energies of H-A acids, (c) radical cation acidities, and (d) the acidities of radicals.

The experimental results presented and referred to in this paper were obtained during the past 15 years by the students whose names appear in the references. Special thanks goes to W. S. Matthews, who modified the Steiner method, reducing the time necessary for each titration and at the same time making it more precise. The author wishes to express his sincere appreciation to these research associates and wishes to thank the National Science Foundation and Petroleum Research Fund for financial support during this period. Discussions with Prof. R. W. Taft were most helpful in preparing the manuscript. We are grateful to Crown Zellerbach Corp. and more recently to Gaylord Chemical Corp. for generous gifts of dimethyl sulfoxide.

Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase¹

ROBERT W. TAFT^{*,†} and FREDERICK G. BORDWELL^{*,‡}

Departments of Chemistry, University of California, Irvine, California 92717, and Northwestern University, Evanston, Illinois 60201 Received May 4, 1988 (Revised Manuscript Received August 30, 1988)

The preceding paper gives extensive data for equilibrium acidities in dimethyl sulfoxide (Me₂SO) and makes comparisons with corresponding results in other condensed-phase media.² In the present paper the results of 76 selected gas-phase acidities³ are compared with corresponding results in Me₂SO as a means of separating inherent effects of molecular structure on acidities from solvent effects. Simplified concepts are presented on relationships between solvent effects and structure. Broad applicability of the results and concepts is shown.

Table I gives comparisons of gas-phase and Me₂SO acidities, expressed by $1.364 \Delta p K_a = -\Delta G^\circ$ values in

Frederick G. Bordwell is Professor Emeritus at Northwestern University. (For a biography summarizing his earlier research activities, see Acc. Chem. Res. 1972, 5, 374). In the period 1970-1980 the Bordwell research group established acidity scales in Me₂SO and N-methyl-2-pyrrolidone solvents using a method adapted from one developed by E. C. Steiner at Dow Chemical Co. Since 1980 the research focus has shifted to the application of the data in the Me₂SO scale to problems in physical organic chemistry, the results of which are summarized in the preceding Account in this issue.

kcal/mol (hereafter abbreviated as kcal) for the proton-transfer equilibria (eq 1) of 76 typical acids HA with

$$HA + O = A^{-} + O O (1)$$

9-phenylfluorenide ion (9-PhFl⁻). The acids have been selected to illustrate important kinds of structural and solvent effects. Positive values of $-\Delta G^{\circ}$ indicate greater acidity (lower pK_a) for HA than for 9-phenylfluorene (9-PhFlH) and vice versa. The acidities from NH_4^+ to CH_4 cover a range of 211 kcal in the gas phase and 74 kcal in Me₂SO solution. The values in the table are arranged in order of increasing Me₂SO medium effects, as defined by $\Delta G^{\circ}_{(g)} - \Delta G^{\circ}_{(s)} = \delta_s \Delta G^{\circ}$ (where s = Me₂SO), which cover a range of 160 kcal or 117 pK_a units.

C - H

(2) Bordwell, F. G. Acc. Chem. Res., preceding paper, in this issue. (3) All neutral-acid $-\Delta G^{\circ}_{(g)}$ values are from the gas-phase acidity scale of Prof. J. E. Bartmess (available by request in care of the Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600). The unpublished results of Drs. F. Anvia, A. D. Headley, J. F. Gal, I. Koppel, M. Mishima, R. W. Taft, and S. Ueji have been incorporated into this scale, which is anchored to the most reliable absolute thermodynamic acidities. The gas-phase acidities for the three positively charged acids in Table I are from ref 4 with correction to a proton affinity of $\rm NH_3$ of 204.0 kcal/mol. All $-\Delta G^{\circ}_{(s)}$ values are from pK_{a} 's cited in ref 2.

463

0001-4842/88/0121-0463\$01.50/0 © 1988 American Chemical Society

⁽⁶⁰⁾ Eberson, L. Acta Chem. Scand. Ser. B 1982, B36, 533-546; 1984, B38, 439-459. Eberson, L. Electron Transfer Reactions in Organic Chemistry; Springer-Verlag: New York, 1978.

⁽⁶¹⁾ Lund, H.; Kristensen, L. H. Acta Chem. Scand. Ser. B 1979, B33, 495-498. Lund, T.; Lund, H. Acta Chem. Scand., Ser. B 1986, B40, 470-485

⁽⁶²⁾ Pross, T. Acc. Chem. Res. 1985, 18, 212-219.

Robert W. Taft is Professor of Chemistry at the University of California, Irvine. Born in Lawrence, KS, Taft received a B.S. in Chemistry from the University of Kansas and a Ph.D. from The Ohio State University where he worked with Melvin Newman. Following a postdoctoral year with Louis Hammett at Columbia University, Taft spent 15 years at The Pennsylvania State University. He has been at Irvine since it began in 1965. The present Account is taken from extensive studies of the effects of molecular structure on gas-phase proton-transfer equilibria, using ion cyclotron resonance spectroscopy. Current work also includes binding studies in the gas phase with a variety of univalent cations. Additional interests include studies of structural and solvent effects on hydrogen-bond acidities and basicities and their applications to treatments of solute partitioning between bilavers and biological activities.

[†]University of California.

[‡]Northwestern University.

⁽¹⁾ This work was supported by grants from the National Science Foundation (UCI and NU).